
Cooperation in aspiration-based N-person prisoner’s dilemmas

Tadeusz Płatkowski* and Paweł Bujnowski
Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

�Received 10 April 2008; revised manuscript received 1 December 2008; published 13 March 2009�

We propose a mathematical model of the N-person prisoner’s dilemma game played by a continuous
population of agents with a time-dependent aspiration level. The model—a system of differential equations—
takes into account the evolution of the aspiration level and of the mean frequency of the cooperators in the
population. The dependence of the asymptotic level of cooperation on the individual payoffs and on the
transition rates determining the agent’s reaction to the received payoffs is studied. In general the existence and
the magnitude of the asymptotic level of cooperation depends on N, the payoffs and the transition rates, and
decreases with increasing N.
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I. INTRODUCTION

Evolution of cooperation is one of the most important
social phenomena studied extensively in social, economic,
biological, and other contexts. The qualitative measures of
cooperation are important characteristics of social groups.

In many scientific disciplines, which investigate macro-
scopic systems of entities with microscopic interactions, the
theoretical description of such systems is based on the binary
contests. The multiplayer game theory is much more compli-
cated than the theory for two-player games. However, the
multiplayer interactions are important in the biological
world, in the economy, as well as in the theoretical descrip-
tion of human behavior. The payoffs from such multiplayer
contests can be different from binary ones. In the former case
all the players take part in one simultaneous contest. In sym-
metric contests the payoff of each player depends only on the
number of other players who play each of the available strat-
egies. Such multiplayer contests can significantly change the
time evolution and the equilibrium properties of the station-
ary states of the population.

One of the most popular and important for applications
games is the prisoner’s dilemma �PD� game, considered as a
paradigm for the evolution of cooperation in the social, bio-
logical, and other contexts, cf. e.g., �1,2� for recent reviews.
Majority of the work on the PD game is focused on the
two-person contests. The multiperson PD has been also re-
cently studied in various contexts �cf. e.g., �3–13�, and ref-
erences cited therein�.

In the case of the continuous populations of players play-
ing the standard two-person PD, without any additional
mechanism which would facilitate the cooperation, it is ex-
pected that in the long run the only stable outcome of the
evolution is the total defection. In �14� an aspiration-based
model of cooperation in a continuous system of agents
matched to play a two-person PD at any instant of time has
been proposed. The aspiration level was a global variable,
updated on the basis of a function of the actual frequency of
cooperators. Introduction of such reinforced-learning mecha-
nism enabled partial cooperation in the long run.

We develop the idea of the continuous system of agents
with variable aspiration, generalizing the interaction part in
order to study systematically the dependence of the coopera-
tion level on the number N of agents which take part in the
contest.

We formulate a general model for arbitrary group size N,
and determine the stationary points of the resulting system of
ordinary differential equations. We demonstrate how the
level of �partial� cooperation changes with the increasing size
of the group for a wide range of parameters determining the
strategy choice of the agents, and discuss—using analytical
tools—examples of multiple equilibria.

II. MODEL

We define the N-person prisoner’s dilemma �N-PD� as a
one stage game in which N identical players simultaneously
choose one of two actions: cooperate �C� or defect �D�, and
obtain the payoffs which depend only on their choice of the
action and on the number of other players who play C and D.
The structure of the payoffs should preserve the essence of
the dilemma �see below�.

We denote by Rk the payoff of the player who chooses C
in the N-PD game in which k opponents �0�k�N� defect,
and N−k−1 opponents cooperate, and by Tk the payoff of the
player who chooses D if k−1 opponents �0�k�N� play D,
and N−k opponents play C. In particular, for N=2, with the
identification R0=R, R1=S, T1=T, T2= P, and ordering T
�R� P�S we obtain the usual two-person PD, with the
payoff matrix

C D

C R S

D T P

which will be abbreviated by �T ,R , P ,S�.
The payoffs in the N-PD must satisfy the general require-

ments of the prisoner’s dilemma. In particular, the highest
profit belongs to the defector who plays with N−1 coopera-
tors, and is greater than that of each of two defectors playing
with N−2 cooperators, etc., whereas the smallest payoff is
that of the cooperator who plays with N−1 defectors. More
in detail, one assumes, cf. �13,15�:*tplatk@mimuw.edu.pl
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�1� For any fixed number of defectors k, the agent who
chooses D is better off than that who chooses C: Tk�Rk−1,
0�k�N.

�2� The average payoff of the group of N players increases
if the number of the cooperators increases. Thus, with k D
players and N−k C players, the average payoff, defined as
PN�k�=kTk+ �N−k�Rk, satisfies for all N and 0�k�N the
inequality PN�k�� PN�k+1�.

�3� The individual payoffs should increase for both defec-
tors and cooperators as the number of defectors in the group
decreases: Rk�Rk−1, 0�k�N, Tk�Tk−1, 0�k�N.

There are many ways of satisfying the above requirements
for the individual payoffs of the players in the N-PD. In this
paper the payoffs of the players in the N-PD game in which
k players defect and N−k players cooperate are defined as a
sum of 2-PD contests as follows: For each C player the pay-
off from the N-PD game with N−k−1 cooperators and k
defectors is

Rk = �N − k − 1�R + kS, 0 � k � N . �1�

For each D player the payoff from the N-PD game with N
−k cooperators and k−1 defectors is defined as

Tk = �N − k�T + �k − 1�P, 1 � k � N . �2�

We refer to these payoffs as accumulated payoffs. It can be
proved by straightforward calculations that the above choice
of the payoffs satisfies the consistency conditions �1�–�3�,
and with relevant normalization is equivalent to the Public
Good game �7–9�. Note that for N�2 the above definitions
do not determine uniquely the ordering of all the individual
payoffs, and different types of the N-PD can be considered,
as will be discussed below.

We assume the evolutionary scenario in which the con-
tinuum of players is matched to play, at any instant of time,
the N-PD. Let �=��t� be the proportion of the cooperators
in the system. The payoff of a randomly chosen player is
defined as

���� = ��C + �1 − ���D, �3�

where �C and �D are, respectively, the mean payoffs of a
cooperator and a defector,

�C = �
k=0

k=N−1

Pk
N���Rk = �N − 1���R + �1 − ��S� , �4�

�D = �
k=0

k=N−1

Pk
N���Tk+1 = �N − 1���T + �1 − ��P� , �5�

where Pk
N���= � N−1

k ��N−1−k�1−��k.
We model the evolution of the system properly generaliz-

ing �14�. The population of noncognitive actors is assumed to
have a global time-dependent aspiration level ��t�. If the
payoff of an agent is lower than the actual aspiration level,
then the agent feels dissatisfied, and switches her action at a
rate that depends on the difference between the payoff �Rk or
Tk� from the actual strategy and the aspiration level ��t�. The
transition rate is defined by a function f���, which deter-
mines how fast the agents react when dissatisfied.

Evolution equation for the frequency of cooperators for
the N-PD reads

�̇ = − �� �
k=0

k=N−1

Pk
N���f�� − Rk��

+ �1 − ��� �
k=0

k=N−1

Pk
N���f�� − Tk+1�� , �6�

where

f���� =0, if � � 0

�0, if � � 0
� �7�

is a nondecreasing continuously differentiable on R+ func-
tion, which gives the probability rate at which the agent who
receives the payoff 	 changes her action when the current
aspiration level is �=	+�.

In Eq. �6� each negative term, labeled by k, corresponds to
the interaction of a cooperator with k defectors and N−1−k
cooperators, in which the cooperator tends to switch to de-
fection if she is dissatisfied, i.e., if the cooperator’s payoff Rk
is smaller than the current aspiration level ��t�. Analogously,
the positive terms account for the increase in the cooperator
frequency � from the dissatisfied defectors.

A similar learning model was considered in �16�. The au-
thors elaborated the Bush-Mosteller model of learning. They
investigated a dynamical system in which there was a feed-
back between the probability of playing a given strategy �C
or D�, and the aspiration level of the system. The probability
increases if the stimulus �the normalized difference between
the payoff and the current aspiration level� is positive, de-
creases otherwise.

Equation �6� can be rewritten in a compact form,

�̇ = �
k=0

k=N−1

Pk
N���Gk��� , �8�

where Gk=−�f��−Rk�+ �1−��f��−Tk+1�. In particular, for
the Heaviside switch function

f0,��� = �0, � � 0

1, � � 0
� �9�

Gk takes only one of the four values: 0, −�, 1–2�, 1−�, and
the right-hand side �rhs� of Eq. �8� is a polynomial of at most
Nth order. This property will be used in proof of Theorem 1
and Examples 1 and 2 below.

The aspiration level can be a fixed constant or an un-
known time-dependent function. In Appendix A we prove
that the asymptotic cooperation level in a 3-PD is lower than
that in the 2-PD if the aspiration level is constant. Below we
consider the general N-PD model with time-dependent aspi-
ration. Following �14� we assume the evolution of the aspi-
ration function to be governed, on the same time scale, by

�̇ = ���� − � . �10�

The system �6�–�10� is a rather complicated nonlinear two-
dimensional �2D� systems of differential equations, with—in
general—nondifferentiable rhs. A remarkable feature of the

TADEUSZ PŁATKOWSKI AND PAWEŁ BUJNOWSKI PHYSICAL REVIEW E 79, 036103 �2009�

036103-2



proposed model is that for each N the stationary points of
Eqs. �6�–�10� can be found by solving the single algebraic
equation

F„�,����… = 0, �11�

where F=F�� ,�� denotes the rhs of Eq. �6�, and, from Eq.
�3�,

� = �N − 1���2R + ��1 − ���S + T� + �1 − ��2P� . �12�

In the following the solutions of Eq. �11� which belong to the
interval �0,1� will be referred to as the �partial� cooperation
levels of the system.

In the next section we find the solutions of Eq. �11� for
different choices of the N-PD payoffs and switch functions f .
We discuss the dependence of the stationary solutions of Eqs.
�6�–�10� on these parameters of the system and on the group
size N. In order to get more insight into the structure of the
solutions, and to understand qualitatively the emerging phe-
nomena, in the current section we provide rigorous results on
the existence and some properties of the cooperation levels
for the specific choices of the switch functions, for the N-PD
with 2�N�5. The important role in the discussion of the
analytical results will be played by the systems with the
Heaviside switch function. In such systems the agents react
“instantaneously” to the differences between their payoffs
and the actual aspiration level of the system. First we show
�Theorem 1 and Examples 1 and 2� that for the Heaviside
switch function the number and the magnitude of the partial
cooperation levels depend on the order N of the game. More
in particular, we prove that for N=2 and N=3 there is at
most one partial cooperation level for any choice of the 2-PD
parameters T ,R , P ,S, whereas for N
4 the situation be-
comes more complex, and more cooperation levels are pos-
sible. Next we show �Theorem 2� that for the linear switch
function, already for the 2-PD the number and the magni-
tudes of the partial cooperation levels depend in a nontrivial
way on the rate of the strategy switching and on the payoffs
of the PD.

Theorem 1. For N=2 and N=3 there exists at most one
cooperation level �� for the systems �6�–�10� with Heaviside
switch function �9� for all T�R� P�S.

Proof. The individual payoffs satisfy for all N the in-
equalities T1�T2¯ �TN, and R0�R1� ¯ �RN. The nu-
merical values of T ,R , P ,S determine the orderings of Tk+1
and Rk and the analytical form of the polynomials in Eq. �8�.

For N=3, from Eqs. �1� and �2� we obtain R0=2R, R1
=R+S, R2=2S, T1=2T, T2=T+ P, and T3=2P. There are
four generic �i.e., with sharp inequalities� orderings of the
above payoffs �for particular T ,R , P ,S some of them should
be replaced by equalities�, giving rise to four types of the
3-PD as follows:

T1 � R0 � T2 � R1 � T3 � R2,

T1 � R0 � T2 � T3 � R1 � R2,

T1 � T2 � R0 � R1 � T3 � R2,

T1 � T2 � R0 � T3 � R1 � R2.

For each of the above orderings of Rk and Tk we proceed as
follows. Let ��� ,��� be a stationary state of Eqs. �6�–�10�;
�� belongs to one of the intervals determined by the order-
ing. For the assumed interval of �� we write down the ex-
plicit form of the function F=F(�� ,�����) �which is here a
polynomial of the third or lower degree� and find solutions
��� �0,1� of Eq. �11�. Then we check whether ��, calcu-
lated from the consistency condition ��=�����, belongs to
the chosen interval. If positive, then �� is the cooperation
level of the system. In Appendix B we give details of the
relevant calculations for N=3. For N=2 the proof is
analogous. �

For N
4 Theorem 1 is not valid. Below we give an ex-
ample of the existence of two cooperation levels for N=4.

Example 1. We choose T=1.5, R=1, P=0, and S=−0.4,
which gives the following ordering of the payoffs in the
4-PD:

T1 � R0 � T2 � R1 � T3 � R2 � T4 � R3. �13�

The ordering divides the domain of the admissible values of
�� into intervals: �−� ,R3�, �R3 ,T4�, . . . , �R0 ,T1�, �T1 , +��.
For �� from each such interval �a ,b� we calculate, for the
Heaviside switch function, the roots ��� �0,1� of the poly-
nomial defined by the rhs of Eq. �8�. If the consistency con-
dition ��=������ �a ,b� is satisfied, then �� is the searched
cooperation level. Subsequently applying this procedure to
all the intervals determined by ordering �13� we obtain two
cooperation levels. For the interval �R2 ,T3�= �0.2,1.5� �1

�

�0.303, �1
��0.97, and for the interval �T3 ,R1�= �1.5,1.6�

�2
�=0.5, �2

�=1.575. Numerical calculations indicate the local
asymptotic stability of the corresponding stationary points of
Eqs. �6�–�10�. For the other intervals the above consistency
conditions on � are not satisfied.

In Fig. 1 we show the cooperation levels for N
=2,3 , . . . ,20 for the data of Example 1. Note two stationary
points of the system for N=4 and for other group sizes.
However, there is no regular correspondence between the
order N of the game and the number of the cooperation lev-
els. This is demonstrated in Example 2 for N=5.
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FIG. 1. Cooperation levels, f = f0, T=1.5, R=1, and S=−0.4.
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Example 2. For the 5-PD and �the same as in Example 1�
the basic payoffs T=1.5, R=1, P=0, S=−0.4 we obtain the
following ordering of the payoffs:

T1 � T2 � R0 � T3 � R1 � T4 � R2 � T5 � R3 � R4.

In Appendix C we rigorously show that there is a unique
cooperation level �cf. also Fig. 1 for N=5�.

In general, the existence of more than one cooperation
level for various group sizes results from the analytical forms
of the polynomials �or more complicated functions in the
case of other switch functions� in Eq. �11�. In Fig. 2 we
present the graphs of the function F in Eq. �11� for the data
from Fig. 1 for N=2,4 ,20. Note two zeros of the function F,
corresponding to the relevant cooperation levels in Fig. 1 for
N=4,20, and one zero for N=2. For N=2 the function F is
continuous, For N=4 the plot is composed of three polyno-
mials �F has two points of discontinuity�; for larger N the
number of different polynomials �and therefore discontinui-
ties� increases.

As can be anticipated from Theorem 1 and the above
examples, the results—in particular the number and the val-
ues of the asymptotic aspiration levels—depend for arbitrary
N not only on the payoff matrix of the N-PD, but also on the
parameters of the switch functions. For arbitrary switch func-
tions the analytical formulas are hard to obtain. In order to
get more insight into the general results of the next section,
we show below how the payoffs and the parameters of the
switch functions influence, already for N=2, the existence
and the magnitude of the aspiration levels for the linear
switch function

f1��� = 	0, � � 0

p� , 0 � � � 1/p
1, � � 1/p .


 �14�

More in particular we prove the following theorem.
Theorem 2. Consider the 2-PD system �6�–�10� with the

switch function f1 and the payoff matrix �T ,1 ,0 ,1−T�, T
�1. Then

�1� For T
2 / p, p� �1,2�, there exists the unique
T-independent cooperation level ��= �p−1� / p.

�2� For T� �1,2�, T�2 / p, there exists the unique,
p-independent cooperation level ��= �2−T� /2.

�3� For p
2 and T�1 there exists the unique coopera-
tion level ��=1 /2.

�4� For 0� p�1, T
2, the cooperation level does not
exist.

Theorem 2 describes the systems which depend on two
parameters: the payoff parameter T and the parameter p
which characterizes the speed of the strategy changes of the
dissatisfied agents. Note that the payoff matrix �T ,1 ,0 ,1
−T�, T�1 can be interpreted as the cost-benefit 2-PD payoff
matrix �b ,b−c ,0 ,−c�, b�c, with the additional normaliza-
tion b−c=1.

Proof. The payoffs in the payoff matrix �T ,1 ,0 ,1−T�
��T1 ,R0 ,T2 ,R1� determine the partition of the real axis into
five intervals, out of which only �T2 ,R0�= �0,1� is of interest
as a domain of the admissible equilibrium aspiration levels
�� �note that here ��=�����=���. Equation �11� takes the
form �after division by 1−��

− �f1�� − R1� + �1 − ��f1�� − T2� = 0 �15�

with

f1�� − X� = �p�� − X� , 0 � p�� − X� � 1

1, p�� − X� � 1,
� �16�

where X=R0 or X=T2. Thus, the function f1 in Eq. �15� is
equal to 1 or p��−X�, which implies four combinations of
the consistency conditions on ��. Let us consider the case
f1���−R0�=1, and f1���−T2�= p���−T2�, which gives the
consistency conditions ���1 / p+1−T, and ���1 / p. Insert-
ing these values of f1 into Eq. �15� we find the solution ��

= �p−1� / p, valid under the conditions defined in the point 1
of Theorem 2. Analogously we consider the other three com-
binations of the values of f1, which lead to points 2, 3, and 4
of Theorem 2. �

Using the same technique, in Example 3 of Appendix C
we calculated the cooperation level for the linear switch
function f1 with p=1 for N=3 and the payoff matrix
�T ,1 ,0 ,1−T�, T�1.
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FIG. 2. Plots of F, f = f0, T=1.5, R=1, and P=0, S=−0.4.
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FIG. 3. Cooperation levels, f = f1, p=0.5, T=2, and
S=−0.25.
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The above analytical results show that already for the
simple switch functions the existence and the magnitudes of
the partial cooperation levels of the system are very sensitive
to the variations of the payoffs and of the parameters which
determine the speed of the strategy changes. In Sec. III we
find the partial cooperation levels for increasing sizes of the
group, various payoffs matrices, and different switch func-
tions.

III. GENERAL RESULTS

In the calculations we choose the basic 2-PD matrix in the
form �T ,R ,0 ,S�, with T�R�0�S. We solved Eq. �11� for
varying payoffs T ,R ,S, different switch functions, and the
group sizes N=2,3 , . . . ,Nmax. In principle Nmax can be arbi-
trarily large; we choose Nmax=100.

Apart from the functions f0 considered above and f1 we
discuss below the results for the switch function

f2��� = 	0, � � 0

�l

v + �l , � � 0, 
 �17�

and briefly comment on results obtained for some other
switch functions.

Mathematical treatment of the dynamical system �6�–�10�
�e.g., the sufficient conditions on the switch function f which
would guarantee the existence of a unique asymptotic state
with partial cooperation for arbitrary N� is a formidable task.
Using the methods from �14� we found for N=3 sufficient
conditions for the switch function, analogous to those found
in the cited paper for N=2. For arbitrary N we present below
solutions of Eq. �11� obtained for different switch functions
and payoffs.

In general, for weakly increasing switch functions the co-
operation level �� decreases with the increasing group size
N. However, this dependence is not necessarily monotonic,
as can be seen from Fig. 3, which shows the dependence of
the partial cooperation level �� on the reward payoff R for
the switch function f1 with p=0.5. Note that, as expected, for
fixed N the increase in the reward R implies the increase of
the cooperation level.

For comparison, in Fig. 4 we present analogous plots for
the switch function f1 with p=1. We notice the emergence of
several cooperation levels for various group sizes, for rea-
sons discussed rigorously in the previous section.

In Fig. 5 we show the dependence of the cooperation level
on the payoff S. The cooperation level decreases when S
decreases.

Similar regularities were observed for other switch func-
tions. As an illustration, in Fig. 6 we present the dependence
of the cooperation level �� on the reward payoff R for the
switch function f2. The increase in R furthers cooperation for
all N.

We also carried out calculations for other payoffs, e.g.,
�3,5,1,0�, used in the celebrated Axelrod’s tournament �17�,
cf. Fig. 7, and for other switch functions, e.g., f3���
=th�q��, ��0, and f4���=1−exp�−r�s�, ��0, with qualita-
tively similar results.

In this paper we assumed that the relaxation of the aspi-
ration level, Eq. �10�, and of the proportion of the coopera-
tors, Eq. �6�, occur on the same time scale. Alternatively, for
fast enough relaxation of ��t�, the aspiration level would be
equal to the average payoff, and the system would be de-
scribed by Eq. �6�. When Eqs. �6�–�10� are solved, their sta-
tionary points should be the same in both cases; however
their stability might differ.
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FIG. 4. Cooperation levels, f = f1, p=1, T=2, and S=−0.25.
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FIG. 5. Cooperation levels, f = f1, p=1, T=2, and R=1.
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FIG. 6. Cooperation levels, f = f2, l=1, v=1, T=2, and S=
−0.25.
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Alternatively to Eqs. �1� and �2� we used another defini-
tion of the individual payoffs �referred to as averaged pay-

offs�: T̃k=Tk / �N−1�, R̃k=Rk / �N−1�. All the averaged pay-
offs are bounded from below by S and from above by T.
Except the four marginal payoffs T1 ,R0 ,TN ,RN−1, the aver-
aged payoffs depend on N. For the averaged payoffs, Rk and

Tk in Eq. �6� are replaced by T̃k=Tk / �N−1�, R̃k=Rk / �N−1�,
the payoff of a randomly chosen player is defined as �̃
=� / �N−1�, and does not depend on the group size. Qualita-
tive conclusions are the same as for the accumulative payoffs
and will be not presented here. Note that in contrast to the
accumulative payoffs, for which the asymptotic aspiration
level � linearly increases with N �cf. Eq. �12��, the
asymptotic aspiration level for the averaged payoffs does not
depend on N.

IV. DISCUSSION

We proposed a hierarchy of the aspiration-based rein-
forced learning models of continuous system of players
matched to play the N-PD games. The learning occurs
through endogenous global aspiration, updated on the basis
of the mean population payoff. The hierarchy is defined for
arbitrary group size, which enables to study the dependence
of the behavior of the population on the group size. The key
role is played by the switch function, which determines the
speed of the strategy changes in the system.

An important feature of the model is that it allows to
study analytically the dependence of the asymptotic propor-
tion of the cooperators in the system of agents playing the
N-PD on the payoff structure of the game, and on the char-
acteristics of the function which describes sensitivity of the
agents to the differences between their payoffs and their ex-
pectations, the latter measured by a global variable—the dy-
namically changing aspiration.

The results capture the intuition that in general coopera-
tion seems to be more difficult when more players participate
in the contests described by the presented generalization of
the two-person aspiration-based PD game to arbitrary size
group. Correspondingly, the aspirations of the players be-
come lower in larger groups. For slowly increasing switch

functions the decrease is in general more regular, and the
partial cooperation level is unique. For steeper switch func-
tions the structure of the relevant phase space is more com-
plicated, with multiple locally stable stationary points. In that
case the asymptotic cooperation level depends on the initial
distribution of the strategies. The effect depends on the nu-
merical values of the parameters of the switch functions and
on the payoffs of the game.

There are various interesting open questions related to the
considered model. As future research subjects we mention
models in which the information possessed by the agents is
not homogeneous, in particular in which agents with differ-
ent strategies could have different switch functions and dif-
ferent aspiration levels, and their evolution would depend on
the mean payoffs of the corresponding groups. For the indi-
vidual agent-based aspiration levels, cellular automata mod-
els seem to be an interesting alternative. The reaction of
agents could depend on the size of the group—people often
react differently in larger groups than in the smaller ones.
The influence of the synergy effects and discounting �cf. �9��
could also be of interest in the frame of the proposed model.

Other types of social dilemmas, e.g., the snow-drift or
stag-hunt games could also be studied in the proposed evo-
lutionary setting. Recently the N-person stag-hunt dilemmas
were studied from the evolutionary perspective in �10�. In
particular the authors proved that the number of the station-
ary points of the considered replicator-type continuous dy-
namics �without learning� depends on the group size N.
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APPENDIX A

Lemma 1. Consider the system with the cooperation level
defined by Eq. �6� for N=2,3, with the averaged payoffs

T̃k=Tk / �N−1�, R̃k=Rk / �N−1�, cf. Eqs. �1� and �2�, and a
fixed aspiration level �. If max��R+S� /2, P���min��T
+ P� /2,R, then the asymptotic partial cooperation levels for
N=2 and N=3 satisfy

�̄2 � �̄3 �A1�

for arbitrary switch function f .
Proof. For N=2 and 3 Eq. �6� reads, respectively,

�̇ = − �2f�� − R� − ��1 − ��f�� − S� + ��1 − ��f�� − T�

+ �1 − ��2f�� − P� , �A2�

�̇ = − �3f�� − R� − 2�2�1 − ��f�� − R1� − ��1 − ��2f�� − S�

+ �2�1 − ��f�� − T1� + 2��1 − ��2f�� − T2�

+ �1 − ��3f�� − P� , �A3�

where R1= �R+S� /2, T1=T, and T2= �T+ P� /2. For the 2-PD
we calculate from Eq. �A2�
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FIG. 7. Cooperation levels, f = f2, l=1, T=5, R=3, P=1, and
S=0.
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�̄2 =
b

a + b
, �A4�

and for the 3-PD, from Eq. �A3�,

�̄3
� =

a + 2b � �a2 + 8bc

2�a + b − 2c�
, �A5�

where we denoted a= f��−S�, b= f��− P�, and c= f��−R1�.
Since a+b
2c, and f is nondecreasing we have �̄3

−�1 and
�̄3

+�1, and Eq. �A1� follows by direct calculation, noticing
that a
b
c, and identifying �̄3 with �̄3

−.
Lemma 2. Let us consider fixed aspiration level �̄ such

that �̄�Ri for all i except i=N−1, and assume that TN��̄
�Ti for all i except i=N. If �̄ satisfies

P � �̄ � mini�N−1,j�N�Ri,Tj , �A6�

then the asymptotic cooperation level does not depend on the
order N of the PD game.

Proof. For the aspiration level �̄ Eq. �6� takes the form

�̇ = − ��1 − ��N−1f��̄ − RN−1� + �1 − ��Nf��̄ − TN� , �A7�

which has two fixed points, both independent of N.

APPENDIX B

We give details of proof of Theorem 1 for N=3. Take the
first ordering

T1 � R0 � T2 � R1 � T3 � R2 �B1�

which implies �cf. formulas �1� and �2� for N=3�

2R � T + P, R + S � 2P . �B2�

We look for solutions of Eq. �11� in the interval �0,1�. Order-
ing �B1� defines the partition of the real axis into seven in-
tervals.

�1� For �� �T1 , +�� Eq. �11� has the solution �=1 /2, for
which the assumed consistency condition for �: ��T1, reads
�note that in the stationary state �=2��2R+��1−���S+T�
+ �1−��2P��: R+S+T+ P�4T, contradicting the 2-PD in-
equalities.

�2� For �� �R0 ,T1� Eq. �11� reads �3−�2−2�+1=0,
with the solution ��4 /9, for which the consistency condi-
tions for � reduce approximately to 20T+20S+25P�65R.
The latter inequality cannot be satisfied together with the
inequality 2R�T+ P in Eq. �B2�.

�3� For �� �T2 ,R0� Eq. �11� has the solution �=1 /2, for
which, from Eq. �12� �= �R+S+T+ P� /2�T2, a contradic-
tion.

�4� For �� �R1 ,T2� Eq. �11� has the solution �=1 /3, for
which the consistency conditions for � reduce to 4T+8P
�7R+5S. Since this consistency condition is satisfied, ��

=1 /3 is the unique cooperation level.
�5� For �� �R1 ,T2� Eq. �11� has the solution �=1 /2, for

which the consistency condition �= �R+S+T+ P� /2�T2 is
not satisfied.

�6� and �7�. For ��R1 Eq. �11� has no solutions in �0,1�.
We demonstrated that for ordering �B1� there is at most

one cooperation level ���=1 /3�. In the same way we proof

the existence of at most one cooperation level for N=3 for
the other three orderings of the 3-PD payoffs. For N=2 the
proof is analogous and will be not presented here.

APPENDIX C

Example 2: Details

For N=5 and the payoff matrix �1.5,1 ,0 ,−0.4� formulas
�1� and �2� give the following ordering of the payoffs in the
5-PD:

T1 � T2 � R0 � T3 � R1 � T4 � R2 � T5 � R3 � R4.

We proceed as in Example 1. Let ��� ,��� be a stationary
state of Eqs. �6�–�10�; �� belongs to an interval determined
by the above ordering. For this interval we write down the
explicit form of the function F=F(�� ,�����), which for the
Heaviside switch function is a polynomial of at most fifth
degree, and determine its zeros ��� �0,1�. If �� calculated
from the consistency condition ��=����� belongs to the
chosen interval, then �� is the cooperation level. We apply
this procedure subsequently to all the intervals determined
by the above ordering. For each interval Eq. �11� has differ-
ent analytical form.

For the first three intervals, −1.6=R4
��−�, −0.2=R3

��R4, 4.5=T5
��R3 Eq. �11� has no solutions in �0,1�.

For the next interval 1.2=R2
��T5 Eq. �11� takes the
form �1−��4�1–2��−4�1−��3�2=0, with the cooperation
level solution �0= �−3+�17� /4� �0,1�. However, the con-
sistency condition R2
� with � calculated from stationary-
state relation �12� written for N=5 and the payoff matrix
�1.5,1 ,0 ,−0.4� takes the form �=4�0�1.1−0.1�0��1.2,
which is not true �the latter inequality leads to rather “subtle”
false result 425�424.36, which shows the sensitivity of the
procedure to the changes of the parameters of the model�.

For the interval 1.5=T4
��R2 Eq. �11� has the solution
�0=1 /4, for which �0=1.075�R2, a contradiction.

For the interval 2.6=R1
��T4 Eq. �11� has the solution
�0=1 /�7, for which �0�1.61, consistently with the as-
sumed interval of �. Thus, this interval gives the partial co-
operation level �0.

For the interval 3=T3
��R1 Eq. �11� reads −4�4

+7�3−7�2−�+1=0; for 4=R0
��T3 Eq. �11� takes the
form 2�4−5�3−�2−�+1=0. In both cases the �unique� so-
lution in �0,1� leads to the value of � which does not belong
to its a priori assumed interval.

Finally, for ��R0=4 there are no solutions since the re-
lation �=4�0�1.1−0.1�0� implies �=4 as the maximal value
of �. In this way we proved the existence of the unique
cooperation level �0=1 /�7.

Example 3

For N=3, and the 2-PD payoff matrix �T ,1 ,0 ,1−T�, T
=2, from Theorem 2 we calculate: T=2: T1=4, T2=2, T3
=0, R0=2, R1=0, and R2=−2, and, from Eq. �12�, �=2�
� �T3 ,R0�. For the switch function f1 with p=1 Eq. �11�
takes the form: −��1−��2+ �1−2�−�2��1−2���=0,
which, with �=2� has the solution �= �−3+�17� /4.

COOPERATION IN ASPIRATION-BASED N-PERSON… PHYSICAL REVIEW E 79, 036103 �2009�

036103-7



�1� R. Hoffmann, J. Artif. Soc. Soc. Simul. 3, 2 �2000�.
�2� G. Szabo and G. Fath, Phys. Rep. 446, 97 �2007�.
�3� S. Suzuki and E. Akiyama, J. Theor. Biol. 249, 93 �2007�.
�4� L. Gulýas and T. Platkowski, On Evolutionary 3-Person Pris-

oner’s Dilemma Games on 2-D Lattice �Springer-Verlag, Ber-
lin, Heidelberg, 2004�, pp. 831–833.

�5� M. Broom, C. Cannings, and G. T. Vickers, Bull. Math. Biol.
59, 931 �1997�.

�6� M. Matsushima and T. Ikegami, J. Theor. Biol. 195, 53
�1998�.

�7� C. Hauert and G. Szabo, Complexity 8, 31 �2003�.
�8� C. Hauert, S. de Monte, J. Hofnauer, and K. Sigmund, J.

Theor. Biol. 218, 187 �2002�.
�9� C. Hauert, F. Michor, M. A. Nowak, and M. Doebeli, J. Theor.

Biol. 239, 195 �2006�.

�10� M. Pachecho, F. C. Santos, M. Souza, and B. Skyrms, Proc.
Roy. Soc. London, Ser. B �to be published�.

�11� S. Galam, Physica A 285, 66 �2000�.
�12� P.L. Krapivsky and S. Redner, Phys. Rev. Lett. 90, 238701

�2003�.
�13� F. Schweitzer, L. Behera, and H. Muhlenbein, Adv. Complex

Syst. 5, 269 �2002�.
�14� F. Palomino and F. Vega-Redondo, Int. J. Game Theory 28,

465 �1999�.
�15� X. Yao and P. Darwen, in Evolutionary Computation: Theory

and Applications �World Sci., Singapore, 1999�.
�16� M. W. Macy and A. Flache, Proc. Natl. Acad. Sci. USA 99,

7229 �2002�.
�17� R. Axelrod, The Evolution of Cooperation �Basic Books, New

York, 1984�.

TADEUSZ PŁATKOWSKI AND PAWEŁ BUJNOWSKI PHYSICAL REVIEW E 79, 036103 �2009�

036103-8


